Well-posedness of convex maximization problems on Stiefel manifolds and orthogonal tensor product approximations

نویسنده

  • André Uschmajew
چکیده

Problems of best tensor product approximation of low orthogonal rank can be formulated as maximization problems on Stiefel manifolds. The functionals that appear are convex and weakly sequentially continuous. It is shown that such problems are always well-posed, even in the case of non-compact Stiefel manifolds. As a consequence, problems of finding a best orthogonal, strong orthogonal or complete orthogonal low-rank tensor product approximation and problems of best Tucker format approximation to any given tensor are always well-posed, even in spaces of infinite dimension. (The best rank-one approximation is a special case of all of them.) In addition, the well-posedness of a canonical low-rank approximation with bounded coefficients can be shown. The proofs are non-constructive and the problem of computation is not addressed here. Mathematics Subject Classification (2000) 15A69 · 41A46 · 41A63

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiple point of self-transverse immesions of certain manifolds

In this paper we will determine the multiple point manifolds of certain self-transverse immersions in Euclidean spaces. Following the triple points, these immersions have a double point self-intersection set which is the image of an immersion of a smooth 5-dimensional manifold, cobordant to Dold manifold $V^5$ or a boundary. We will show there is an immersion of $S^7times P^2$ in $mathbb{R}^{1...

متن کامل

Conformal mappings preserving the Einstein tensor of Weyl manifolds

In this paper, we obtain a necessary and sufficient condition for a conformal mapping between two Weyl manifolds to preserve Einstein tensor. Then we prove that some basic curvature tensors of $W_n$ are preserved by such a conformal mapping if and only if the covector field of the mapping is locally a gradient. Also, we obtained the relation between the scalar curvatures of the Weyl manifolds r...

متن کامل

A Priori Error Analysis of Stochastic Galerkin Mixed Approximations of Elliptic PDEs with Random Data

We construct stochastic Galerkin approximations to the solution of a first-order system of PDEs with random coefficients. Under the standard finite-dimensional noise assumption, we transform the variational saddle point problem to a parametric deterministic one. Approximations are constructed by combining mixed finite elements on the computational domain with M -variate tensor product polynomia...

متن کامل

On minimizing a quadratic function on Stiefel manifolds 1

We give an efficient, quick algorithm for the minimization of a quadratic function over Stiefel manifold. We reduce the original (nonconvex) problem, to an SDP, by computing a convex hull of the certain set of matrices.

متن کامل

Nice foliations of globally hyperbolic manifolds

In the research on classical field theory on Lorentzian manifolds, over the decades it became more and more transparent that the most appropriate geometric category for classical field theory is the one of globally hyperbolic manifolds (together with their casusal embeddings). On one hand, this is due to its relatively easy and invariant definition as the category of manifolds with compact caus...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Numerische Mathematik

دوره 115  شماره 

صفحات  -

تاریخ انتشار 2010